Dissipative flows, global attractors and shape theory

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The shape of attractors for 3-D dissipative dynamical systems

We introduce a new method to bound attractors of dissipative dynamical systems in phase and parameters spaces. The method is based on the determination of families of transversal surfaces (surfaces crossed by the ow in only one direction). This technique yields very restrictive geometric bounds in phase space for the attractors. It also gives ranges of parameters of the system for which no chao...

متن کامل

Shape of attractors for three-dimensional dissipative dynamical systems

We introduce a method to bound attractors of dissipative dynamical systems in phase and parameter spaces. The method is based on the determination of families of transversal surfaces (surfaces crossed by the flow in only one direction). This technique yields very restrictive geometric bounds in phase space for the attractors. It also gives ranges of parameters of the system for which no chaotic...

متن کامل

Global Attractors for Nonlinear Wave Equations with Nonlinear Dissipative Terms

We show the existence, size and some absorbing properties of global attractors of the nonlinear wave equations with nonlinear dissipations like ρ(x, ut) = a(x)|ut|rut.

متن کامل

Attractors of strongly dissipative systems

A class of infinite-dimensional dissipative dynamical systems is defined for which there exists a unique equilibrium point, and the rate of convergence to this point of the trajectories of a dynamical system from the above class is exponential. All the trajectories of the system converge to this point as t → +∞, no matter what the initial conditions are. This class consists of strongly dissipat...

متن کامل

Global Attractors for Gradient Flows in Metric Spaces

We develop the long-time analysis for gradient flow equations in metric spaces. In particular, we consider two notions of solutions for metric gradient flows, namely energy and generalized solutions. While the former concept coincides with the notion of curves of maximal slope of [AGS05], we introduce the latter to include limits of time-incremental approximations constructed via the Minimizing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2019

ISSN: 0166-8641

DOI: 10.1016/j.topol.2019.03.011